Optimizing Solution in Decision Supporting System for River Basin Management Consisting of a Reservoir System

Author:

Ngamsert Ratsuda1,Techarungruengsakul Rapeepat1,Kaewplang Siwa1,Hormwichian Rattana1,Prasanchum Haris2,Sivanpheng Ounla3,Kangrang Anongrit1ORCID

Affiliation:

1. Faculty of Engineering, Mahasarakham University, Kantharawichai District, Maha Sarakham 44150, Thailand

2. Faculty of Engineering, Rajamangala University of Technology, Isan Khon Kaen Campus, Muang, Khon Kaen 40000, Thailand

3. Faculty of Water Resources, National University of Laos, Vientiane 01020, Laos

Abstract

Decision support systems tackle problems and require systematic planning. They consider physical data, hydrological data, and sediment levels to achieve efficiency and adaptability in various situations. Therefore, this research aims to identify alternative engineering choices for the management of a river basin with a single reservoir system. Optimization techniques, including marine predator algorithm (MPA), genetic algorithm (GA), genetic programming (GP), tabu search (TS), and flower pollination algorithm (FPA), were applied to find the optimal reservoir rule curves using a reservoir simulation model. The study focused on the Ubolratana Reservoir in Thailand’s Khon Kaen Province, considering historic inflow data, water demand, hydrologic and physical data, and sedimentation volume. Four scenarios were considered: normal water scarcity, high water scarcity, normal excess water, and high excess water. The optimal rule curves derived from the reservoir simulation model, incorporating sedimentation and hedging rule (HR) criteria, were found to be the best engineering choices. In the normal and high water scarcity scenarios, they minimized the average water shortage to 95.558 MCM/year, with the lowest maximum water shortage 693.000 MCM/year. Similarly, in the normal and high excess water scenarios, the optimal rule curves minimized the average excess water, resulting in a minimum overflow of 1087.810 MCM/year and the lowest maximum overflow 4105.660 MCM/year. These findings highlight the effectiveness of integrating optimization techniques and a reservoir simulation model to obtain the optimal rule curves. By considering sedimentation and incorporating HR criteria, the selected engineering alternatives demonstrated their ability to minimize water shortage and excess water. This contributes to improved water resource management and decision-making in situations of scarcity and excess.

Funder

Mahasarakham University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3