Abstract
Obesity is increasing at an alarming rate worldwide, which is characterized by the excessive accumulation of triglycerides in adipocytes. Emerging evidence has demonstrated that macroautophagy and chaperone-mediated autophagy (CMA) regulate lipid mobilization and play a key role in energy balance. Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase, which is important in regulating macroautophagy and lipid metabolism. It is still unknown whether SIRT3 modulates macroautophagy and CMA in adipocytes. The current study found that macroautophagy was dynamically regulated during 3T3-L1 adipocyte differentiation, which coincided with SIRT3 expression. In mature adipocytes, overexpression of SIRT3 activated macroautophagy, mainly on lipid droplets (LDs), through activating the AMP-activated protein kinase (AMPK)-unc-51-like kinase 1 (ULK1) pathway, which in turn resulting in smaller LD size and reduced lipid accumulation. Moreover, SIRT3 overexpression induced the formation of perilipin-1 (PLN1)-heat shock cognate 71 kDa protein (HSC70)-lysosome-associated membrane protein 2 (LAMP2) complex, to activate CMA and cause the instability of LDs in adipocytes. In summary, we found SIRT3 is a positive regulator of macroautophagy and CMA in adipocytes, which might be a promising therapeutic target for treatment of obesity and its related metabolic dysfunction.
Funder
National Natural Science Foundation of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献