Author:
Lyu Haicai,Wang Han,Bi Qincheng,Niu Fenglei
Abstract
Experiments on the convection heat transfer and pressure drop of supercritical carbon dioxide in a mini vertical upward flow were investigated in a smooth tube with an inner diameter of 2 mm. The experiments were conducted with pressures ranging from 7.62 to 8.44 MPa, mass fluxes ranging from 600 to 1600 kg·m−2·s−1, and heat flux ranging from 49.3 to 152.3 kW·m−2. Results show that the peak of heat transfer occurs when the bulk fluid temperature is below the proposed critical temperature and the wall temperature is above the proposed critical temperature. For the 2 mm vertical upward flow, the radial buoyancy effects are relatively weak, and the axial thermal acceleration effect cannot be negligible. In this study, a new modified Jackson correlation for the supercritical carbon dioxide is proposed for convective heat transfer. To reflect the effect of flow acceleration on heat transfer, a dimensionless heat flux was introduced to construct a new semi-correlation of heat transfer. The new correlation of friction factor taking into account the variation of density and dynamic viscosity was proposed with 146 experimental data within a ±20% error band.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献