Prmt7 Downregulation in Mouse Spermatogonia Functions through miR-877-3p/Col6a3

Author:

Gao Hongmei,Zhang Mingrui,Guo Jiankang,Liu Zhiguo,Guo Fei,Wang Bingyuan,Mu Yulian

Abstract

Protein arginine methyltransferases 7 (Prmt7) is expressed in male germ cells, including primordial germ cells, gonocytes, and spermatogonia. Our previous study demonstrated that Prmt7 downregulation reduced the proliferation of GC-1 cells (a cell line of mouse immortalized spermatogonia). However, how Prmt7 regulates spermatogonial proliferation through miRNA and the target gene remains elusive. Here, we experimentally reduced the Prmt7 expression in the GC-1 cells and subjected them to miRNA sequencing to explore the miRNA profile and its Prmt7-responsive members. In total, 48 differentially expressed miRNAs (DEmiRNAs), including 36 upregulated and 12 downregulated miRNAs, were identified. After verifying the validity of sequencing results through qRT-PCR assays in randomly selected DEmiRNAs, we predicted the target genes of these DEmiRNAs. Next, we combined DEmiRNA target genes and previously identified differentially expressed genes between Prmt7 knockdown and control groups of GC-1 cells, which resulted in seven miRNA/target gene pairs. Among these miRNA/target gene pairs, we further detected the expression of Col6a3 (collagen type VI alpha 3) as the target gene of mmu-miR-877-3p. The results suggested that Prmt7 downregulation in mouse spermatogonia might function through miR-877-3p/Col6a3. Overall, these findings provide new insights into the role of Prmt7 in male germ cell development through miRNA and target genes.

Funder

National Natural Science Foundation of China

Chinese Academy of Agricultural Sciences: Major Scientific Research Tasks for Scientific and Technological Innovation Project

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3