The Effects of Flavonoid Apigenin on Male Reproductive Health: Inhibition of Spermatogonial Proliferation through Downregulation of Prmt7/Akt3 Pathway

Author:

Wang Bingyuan,Zhang Mingrui,Guo Jiankang,Liu ZhiguoORCID,Zhou Rong,Guo Fei,Li Kui,Mu Yulian

Abstract

Apigenin, a common dietary flavonoid abundantly present in a variety of fruits and vegetables, has promising anticancer properties. As an effector of apigenin in myoblasts, protein arginine methyltransferase 7 (Prmt7) is required for male germ cell development. However, whether apigenin may influence male reproductive health through Prmt7 is still unclear. To this end, mouse spermatogonia were treated with different concentrations (2.5 to 50 μM) of apigenin for 48 h, which showed that apigenin could cause reduced cell proliferation in conjunction with longer S phase and G2/M phase (with concentrations of 10 and 20 μM, respectively), and increased apoptosis of spermatogonia (with concentration of 20 μM). Reduced Prmt7 expression was found in 20 μM apigenin-treated spermatogonia. Moreover, siRNA-induced Prmt7 knockdown exhibited similar influence on spermatogonia as that of apigenin treatment. In mechanistic terms, transcriptome analysis revealed 287 differentially expressed genes between Prmt7-downregulated and control spermatogonia. Furthermore, rescue experiments suggested that the effects of apigenin on spermatogonia might be mediated through the Prmt7/Akt3 pathway. Overall, our study supports that apigenin can interfere with mouse spermatogonial proliferation by way of the downregulated Prmt7/Akt3 pathway, which demonstrates that the concentration should be taken into account in future applications of apigenin for cancer therapy of men.

Funder

National Natural Science Foundation of China

Special Fund of Chinese Central Government for Basic Scientific Research Operations in Com-monweal Research Institutes

Agricultural Science and Technology Innovation Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3