Deep Neural Network Framework Based on Word Embedding for Protein Glutarylation Sites Prediction

Author:

Liu Chuan-MingORCID,Ta Van-DaiORCID,Le Nguyen Quoc KhanhORCID,Tadesse Direselign Addis,Shi Chongyang

Abstract

In recent years, much research has found that dysregulation of glutarylation is associated with many human diseases, such as diabetes, cancer, and glutaric aciduria type I. Therefore, glutarylation identification and characterization are essential tasks for determining modification-specific proteomics. This study aims to propose a novel deep neural network framework based on word embedding techniques for glutarylation sites prediction. Multiple deep neural network models are implemented to evaluate the performance of glutarylation sites prediction. Furthermore, an extensive experimental comparison of word embedding techniques is conducted to utilize the most efficient method for improving protein sequence data representation. The results suggest that the proposed deep neural networks not only improve protein sequence representation but also work effectively in glutarylation sites prediction by obtaining a higher accuracy and confidence rate compared to the previous work. Moreover, embedding techniques were proven to be more productive than the pre-trained word embedding techniques for glutarylation sequence representation. Our proposed method has significantly outperformed all traditional performance metrics compared to the advanced integrated vector support, with accuracy, specificity, sensitivity, and correlation coefficient of 0.79, 0.89, 0.59, and 0.51, respectively. It shows the potential to detect new glutarylation sites and uncover the relationships between glutarylation and well-known lysine modification.

Funder

National Taipei University of Technology

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3