1. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? arXiv preprint arXiv:2105.14491 (2021)
2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
3. Durso-Finley, J., Falet, J.P., Nichyporuk, B., Douglas, A., Arbel, T.: Personalized prediction of future lesion activity and treatment effect in multiple sclerosis from baseline MRI. In: International Conference on Medical Imaging with Deep Learning, pp. 387–406. PMLR (2022)
4. Falet, J.P.R., et al.: Estimating individual treatment effect on disability progression in multiple sclerosis using deep learning. Nat. Commun. 13(1), 5645 (2022)
5. Filippi, M., et al.: Identifying progression in multiple sclerosis: new perspectives. Ann. Neurol. 88(3), 438–452 (2020)