Affiliation:
1. Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
Abstract
The Earth has cooled since the early Pliocene, which was punctuated by accelerated cooling indicative of thresholds. I posit that the cooling was initiated when the Neogene uplift of the Tibetan highland caused it to ice over, augmenting the albedo. I formulate a minimal warm/cold/Arctic box model to test this hypothesis and prognose the Pliocene climate. In particular, based on model physics, I discern three thermal thresholds as Pliocene cools: (1) when the Arctic temperature falls below the marking temperature of the ice front, the East Greenland ice sheet would descend to the sea level and calve into the Nordic Seas; (2) when the Arctic temperature cools to the freezing point, the ice sheet would form and expand over circum-Arctic lowlands to cause a massive deposition of ice-rafted debris marking Northern Hemisphere glaciation (NHG); (3) when glacial state persists through low eccentricity, it would cause a transition from obliquity- to eccentricity-dominated glacial cycles. Aligning these thresholds with the observed ones around 3.5, 2.7, and 1 million years ago, the model produces a temporal evolution of the Pliocene temperature as well as its driving albedo change. Since the latter can be accommodated by the observed one, it supports the Neogene uplift as the tectonic origin of NHG.