Anomaly Detection with Feature Extraction Based on Machine Learning Using Hydraulic System IoT Sensor Data

Author:

Kim Doyun,Heo Tae-YoungORCID

Abstract

Hydraulic systems are advanced in function and level as they are used in various industrial fields. Furthermore, condition monitoring using internet of things (IoT) sensors is applied for system maintenance and management. In this study, meaningful features were identified through extraction and selection of various features, and classification evaluation metrics were presented through machine learning and deep learning to expand the diagnosis of abnormalities and defects in each component of the hydraulic system. Data collected from IoT sensor data in the time domain were divided into clusters in predefined sections. The shape and density characteristics were extracted by cluster. Among 2335 newly extracted features, related features were selected using correlation coefficients and the Boruta algorithm for each hydraulic component and used for model learning. Linear discriminant analysis (LDA), logistic regression, support vector classifier (SVC), decision tree, random forest, XGBoost, LightGBM, and multi-layer perceptron were used to calculate the true positive rate (TPR) and true negative rate (TNR) for each hydraulic component to detect normal and abnormal conditions. Valve condition, internal pump leakage, and hydraulic accumulator data showed TPR performance of 0.94 or more and a TNR performance of 0.84 or more. This study’s findings can help to determine the stable and unstable states of each component of the hydraulic system and form the basis for engineers’ judgment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3