Domain-Adaptive Prototype-Recalibrated Network with Transductive Learning Paradigm for Intelligent Fault Diagnosis under Various Limited Data Conditions

Author:

Kuang JiachenORCID,Tao Tangfei,Wu Qingqiang,Han Chengcheng,Wei Fan,Chen Shengchao,Zhou Wenjie,Yan Cong,Xu Guanghua

Abstract

In real industrial scenarios, intelligent fault diagnosis based on data-driven methods has been widely researched in the past decade. However, data scarcity is widespread in fault diagnosis tasks owning to the difficulties in collecting adequate data. As a result, there is an increasing demand for both researchers and engineers for fault identification with scarce data. To address this issue, an innovative domain-adaptive prototype-recalibrated network (DAPRN) based on a transductive learning paradigm and prototype recalibration strategy (PRS) is proposed, which has the potential to promote the generalization ability from the source domain to target domain in a few-shot fault diagnosis. Within this scheme, the DAPRN is composed of a feature extractor, a domain discriminator, and a label predictor. Concretely, the feature extractor is jointly optimized by the minimization of few-shot classification loss and the maximization of domain-discriminative loss. The cosine similarity-based label predictor, which is promoted by the PRS, is exploited to avoid the bias of naïve prototypes in the metric space and recognize the health conditions of machinery in the meta-testing process. The efficacy and advantage of DAPRN are validated by extensive experiments on bearing and gearbox datasets compared with seven popular and well-established few-shot fault diagnosis methods. In practical application, the proposed DAPRN is expected to solve more challenging few-shot fault diagnosis scenarios and facilitate practical fault identification problems in modern manufacturing.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3