Domain Conditioned Joint Adaptation Network for Intelligent Bearing Fault Diagnosis Across Different Positions and Machines
Author:
Affiliation:
1. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
2. School of Mechanical Engineering and the State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, China
Funder
National Key Research and Development Program of China
Ministry of Industry and Information Technology of China [Research and Verification of Remote Operation and Maintenance Standards for tunnel boring machine (TBM)]
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/7361/10043099/10017183.pdf?arnumber=10017183
Reference43 articles.
1. Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
2. Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
3. Multiscale Deep Graph Convolutional Networks for Intelligent Fault Diagnosis of Rotor-Bearing System Under Fluctuating Working Conditions
4. Bi-classifier determinacy maximization for unsupervised domain adaptation;li;arXiv 2012 06995,2020
5. A deep partial adversarial transfer learning network for cross-domain fault diagnosis of machinery
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-source dynamic adaptive domain generalization network for crack detection under unknown temperature environment;Measurement;2025-01
2. Open-set domain adaptive fault diagnosis based on supervised contrastive learning and a complementary weighted dual adversarial network;Mechanical Systems and Signal Processing;2025-01
3. Integrating intrinsic information: A novel open set domain adaptation network for cross-domain fault diagnosis with multiple unknown faults;Knowledge-Based Systems;2024-09
4. Prior-knowledge-guided mode filtering network for interpretable equipment intelligent diagnosis under varying speed conditions;Advanced Engineering Informatics;2024-08
5. Fault diagnosis method via one vs rest evidence classifier considering imprecise feature samples;Applied Soft Computing;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3