Multistability Mechanisms for Improving the Performance of a Piezoelectric Energy Harvester with Geometric Nonlinearities

Author:

Wang Zhenhua1,Shang Huilin1ORCID

Affiliation:

1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

This study presents multistability mechanisms that can enhance the energy harvesting performance of a piezoelectric energy harvester (PEH) with geometrical nonlinearities. To configure triple potential wells, static bifurcation diagrams in the structural parameter plane are depicted. On this basis, the key structural parameter is considered, of which three reasonable values are then chosen for comparing and evaluating the performances of the triple-well PEH under them. Then, intra-well responses and the corresponding voltages of the system are investigated qualitatively. A preliminary analysis of the suitable energy-harvesting conditions is carried out, which is then validated by numerical simulations of the evolution of coexisting attractors and their basins of attraction with variations in the excitation level and frequency. It follows that, under a low-level ambient excitation, the intra-well responses around the trivial equilibrium dominate the energy-harvesting performance. When the level of the environmental excitation is very low, which one of the three values of the key structural parameter is the best for improving the performance of the PEH system depends on the range of the excitation frequency; when the excitation level increases sufficiently to induce inter-well responses, the maximum one is the best for improving the performance of the PEH. The findings provide valuable insights for researchers working in the structure optimization and practical applications of geometrically nonlinear PEHs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3