Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach

Author:

Seabe Phumudzo Lloyd1ORCID,Moutsinga Claude Rodrigue Bambe1,Pindza Edson2

Affiliation:

1. Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Ga-Rankuwa 0208, South Africa

2. Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

Abstract

Highly accurate cryptocurrency price predictions are of paramount interest to investors and researchers. However, owing to the nonlinearity of the cryptocurrency market, it is difficult to assess the distinct nature of time-series data, resulting in challenges in generating appropriate price predictions. Numerous studies have been conducted on cryptocurrency price prediction using different Deep Learning (DL) based algorithms. This study proposes three types of Recurrent Neural Networks (RNNs): namely, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bi-Directional LSTM (Bi-LSTM) for exchange rate predictions of three major cryptocurrencies in the world, as measured by their market capitalization—Bitcoin (BTC), Ethereum (ETH), and Litecoin (LTC). The experimental results on the three major cryptocurrencies using both Root Mean Squared Error (RMSE) and the Mean Absolute Percentage Error (MAPE) show that the Bi-LSTM performed better in prediction than LSTM and GRU. Therefore, it can be considered the best algorithm. Bi-LSTM presented the most accurate prediction compared to GRU and LSTM, with MAPE values of 0.036, 0.041, and 0.124 for BTC, LTC, and ETH, respectively. The paper suggests that the prediction models presented in it are accurate in predicting cryptocurrency prices and can be beneficial for investors and traders. Additionally, future research should focus on exploring other factors that may influence cryptocurrency prices, such as social media and trading volumes.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3