Bitcoin Price Prediction Using Deep Bayesian LSTM With Uncertainty Quantification: A Monte Carlo Dropout–Based Approach

Author:

Hassan Masoud Muhammed1ORCID

Affiliation:

1. Department of Computer Science, College of Science University of Zakho Zakho Kurdistan Region Iraq

Abstract

ABSTRACTBitcoin, being one of the most triumphant cryptocurrencies, is gaining increasing popularity online and is being used in a variety of transactions. Recently, research on Bitcoin price predictions is receiving more attention, and researchers have investigated the various state‐of‐the‐art machine learning (ML) and deep learning (DL) models to predict Bitcoin price. However, despite these models providing promising predictions, they consistently exhibit uncertainty, which cannot be adequately quantified by classical ML models alone. Motivated by the enormous success of applying Bayesian approaches in several disciplines of ML and DL, this study aims to use Bayesian methods alongside Long Short‐Term Memory (LSTM) to predict the closing Bitcoin price and consequently measure the uncertainty of the prediction model. Specifically, we adopted the Monte Carlo dropout (MC‐Dropout) method with the Bayesian LSTM model to quantify the epistemic uncertainty of the model's predictions and provided confidence intervals for the predicted outputs. Experimental results showed that the proposed model is efficient and outperforms other state‐of‐the‐art models in terms of root mean square error (RMSE), mean absolute error (MAE) and R2. Thus, we believe that these models may assist the investors and traders in making critical decisions based on short‐term predictions of Bitcoin price. This study illustrates the potential benefits of utilizing Bayesian DL approaches in time series analysis to improve data prediction accuracy and reliability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3