Fractional Polynomial Models as Special Cases of Bayesian Generalized Nonlinear Models

Author:

Hubin Aliaksandr123ORCID,Heinze Georg4ORCID,De Bin Riccardo2

Affiliation:

1. Bioinformatics and Applied Statistics, Norwegian University of Life Sciences, 1433 Ås, Norway

2. Department of Mathematics, University of Oslo, 0313 Oslo, Norway

3. Research Administration, Ostfold University College, 1757 Halden, Norway

4. Institute of Clinical Biometrics, Center for Medical Data Science, Medical University of Vienna, 1090 Vienna, Austria

Abstract

We propose a framework for fitting multivariable fractional polynomial models as special cases of Bayesian generalized nonlinear models, applying an adapted version of the genetically modified mode jumping Markov chain Monte Carlo algorithm. The universality of the Bayesian generalized nonlinear models allows us to employ a Bayesian version of fractional polynomials in any supervised learning task, including regression, classification, and time-to-event data analysis. We show through a simulation study that our novel approach performs similarly to the classical frequentist multivariable fractional polynomials approach in terms of variable selection, identification of the true functional forms, and prediction ability, while naturally providing, in contrast to its frequentist version, a coherent inference framework. Real-data examples provide further evidence in favor of our approach and show its flexibility.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3