Evolutionary variational inference for Bayesian generalized nonlinear models

Author:

Sommerfelt Philip Sebastian Hauglie,Hubin AliaksandrORCID

Abstract

AbstractIn the exploration of recently developed Bayesian Generalized Nonlinear Models (BGNLM), this paper proposes a pragmatic scalable approximation for computing posterior distributions. Traditional Markov chain Monte Carlo within the populations of the Genetically Modified Mode Jumping Markov Chain Monte Carlo (GMJMCMC) algorithm is an NP-hard search problem. To linearize them, we suggest using instead variational Bayes, employing either mean-field approximation or normalizing flows for simplicity and scalability. This results in an evolutionary variational Bayes algorithm as a more scalable alternative to GMJMCMC. Through practical applications including inference on Bayesian linear models, Bayesian fractional polynomials, and full BGNLM, we demonstrate the effectiveness of our method, delivering accurate predictions, transparency and interpretations, and accessible measures of uncertainty, while improving the scalability of BGNLM inference through on the one hand using a novel variational Bayes method, but, on the other hand, enabling the use of GPUs for computations.

Funder

Norwegian University of Life Sciences

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

2. European Parliament: general data protection regulation 119(1), 1–88 (2016). https://eur-lex.europa.eu/eli/reg/2016/679/oj

3. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

4. Olsen LHB, Glad IK, Jullum M, Aas K (2024) A comparative study of methods for estimating model-agnostic shapley value explanations. Data Min Knowl Discov 38:1782–1829. https://doi.org/10.1007/s10618-024-01016-z

5. Covert I, Lundberg SM, Lee S-I (2020) Understanding global feature contributions with additive importance measures. Adv Neural Inf Process Syst 33:17212–17223

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3