Abstract
The occurrence and flow of shale gas are substantially impacted by nanopore structures. The fractal dimension provides a new way to explore the pore structures of shale reservoirs. In this study, eight deep shale samples from Longmaxi Formation to Wufeng Formation in Southern Sichuan were selected to perform a series of analysis tests, which consisted of small-angle neutron scattering, low-pressure nitrogen adsorption, XRD diffraction, and large-scale scanning electron microscopy splicing. The elements that influence the shale fractal dimension were discussed from two levels of mineral composition and pore structures, and the relationship between the mass fractal dimension and surface fractal dimension was focused on during a comparative analysis. The results revealed that the deep shale samples both had mass fractal characteristics and surface fractal characteristics. The mass fractal dimension ranged from 2.499 to 2.991, whereas the surface fractal dimension ranged from 2.814 to 2.831. The mass fractal dimension was negatively correlated with the surface fractal dimension. The mass fractal dimension and the surface fractal dimension are controlled by organic matter pores, and their development degree significantly affects the fractal dimension. The mass fractal dimension increases with the decrease of a specific surface area and pore volume and increases with the increase of the average pore diameter. The permeability and surface fractal dimension are negatively correlated, but no significant correlation exists between the permeability and mass fractal dimension, and the internal reason is the dual control effect of organic matter on shale pores. This study comprehensively analyses the mass fractal characteristics and surface fractal characteristics, which helps in a better understanding of the pore structure and development characteristics of shale gas reservoirs.
Funder
Demonstration Project of the National Science and Technology Major Project of the Ministry of Science and Technology of China
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Reference46 articles.
1. Impact of Shale Gas Development on Regional Water Quality
2. Development progress, potential and prospect of shale gas in China;Zou;Nat. Gas Ind.,2021
3. High-quality development of ultra-deep large gas fields in China: Challenges, strategies and proposals
4. Fully coupled modeling of two-phase fluid flow and geomechanics in ultra-deep natural gas reservoirs
5. Micro-types and characteristics of shale reservoir of the lower paleozoic in southeast Sichuan basin, and their effects on the gas content;Nie;Earth Sci. Front.,2014
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献