Fractal Characteristics of Deep Shales in Southern China by Small-Angle Neutron Scattering and Low-Pressure Nitrogen Adsorption

Author:

Zhan Hongming,Li Xizhe,Hu Zhiming,Duan Xianggang,Wu Wei,Guo Wei,Lin WeiORCID

Abstract

The occurrence and flow of shale gas are substantially impacted by nanopore structures. The fractal dimension provides a new way to explore the pore structures of shale reservoirs. In this study, eight deep shale samples from Longmaxi Formation to Wufeng Formation in Southern Sichuan were selected to perform a series of analysis tests, which consisted of small-angle neutron scattering, low-pressure nitrogen adsorption, XRD diffraction, and large-scale scanning electron microscopy splicing. The elements that influence the shale fractal dimension were discussed from two levels of mineral composition and pore structures, and the relationship between the mass fractal dimension and surface fractal dimension was focused on during a comparative analysis. The results revealed that the deep shale samples both had mass fractal characteristics and surface fractal characteristics. The mass fractal dimension ranged from 2.499 to 2.991, whereas the surface fractal dimension ranged from 2.814 to 2.831. The mass fractal dimension was negatively correlated with the surface fractal dimension. The mass fractal dimension and the surface fractal dimension are controlled by organic matter pores, and their development degree significantly affects the fractal dimension. The mass fractal dimension increases with the decrease of a specific surface area and pore volume and increases with the increase of the average pore diameter. The permeability and surface fractal dimension are negatively correlated, but no significant correlation exists between the permeability and mass fractal dimension, and the internal reason is the dual control effect of organic matter on shale pores. This study comprehensively analyses the mass fractal characteristics and surface fractal characteristics, which helps in a better understanding of the pore structure and development characteristics of shale gas reservoirs.

Funder

Demonstration Project of the National Science and Technology Major Project of the Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference46 articles.

1. Impact of Shale Gas Development on Regional Water Quality

2. Development progress, potential and prospect of shale gas in China;Zou;Nat. Gas Ind.,2021

3. High-quality development of ultra-deep large gas fields in China: Challenges, strategies and proposals

4. Fully coupled modeling of two-phase fluid flow and geomechanics in ultra-deep natural gas reservoirs

5. Micro-types and characteristics of shale reservoir of the lower paleozoic in southeast Sichuan basin, and their effects on the gas content;Nie;Earth Sci. Front.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3