Temporal and Spatial Analysis on the Fractal Characteristics of the Helical Vortex Rope

Author:

Li Puxi,Tao Ran,Yang Shijie,Zhu DiORCID,Xiao Ruofu

Abstract

Vortex rope is a common phenomenon in the draft tube of hydraulic turbines. It may cause strong pressure pulsation, noise, and strong vibration of the unit especially when it is helical. Therefore, the study of vortex rope is of great significance. In order to study the helical vortex rope, the embedded large eddy simulation (ELES) method in the hybrid methods is used based on the vortex rope generator case. The Liutex method can show the three-dimensional shape of the vortex rope well. In order to quantitatively describe the helical vortex rope, the three-dimensional structure is divided into multiple two-dimensional sections, and then the shape of vortex rope on each section is processed to extract the perimeter and area of the vortex. Combined with the change trend of vortex number and section area, the helical vortex rope is divided into four zones. Then, the fractal dimension on each zone and section can be obtained, and it can be used to quantitatively analyze the change trend of the vortex rope in time and space. The fractal analysis method can be applied to the analysis of the vortex rope in the draft tube to help judge the flow pattern shape and the stability of the unit operating conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference32 articles.

1. Instability of large-scale prototype Francis turbines of Three Gorges power station at part load

2. Experimental Study of Load Variations on Pressure Fluctuations in a Prototype Reversible Pump Turbine in Generating Mode

3. Discussion about the mechanism of self-excited arcuate cyclotron of Francis turbine shaft;Xu;Larg. Electr. Mach. Hydraul. Turbine,2022

4. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow

5. Power swings in hydroelectric power plants;Rheingans;Trans. ASME,1940

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3