Investigation of Fractal Characteristics of Karman Vortex for NACA0009 Hydrofoil

Author:

Zhang Fangfang1,Zuo Yaju2,Zhu Di2ORCID,Tao Ran134,Xiao Ruofu13

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China

2. College of Engineering, China Agricultural University, Beijing 100083, China

3. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083, China

4. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

Abstract

A Karman vortex is a phenomenon of fluid flow that can cause fluctuation and vibration. As a result, it leads to fatigue damage to structures and induces safety accidents. Therefore, the analysis of the shedding law and strength of the Karman vortex is significant. To further understand the laws of turbulent Karman vortex shedding and strength, this study conducts a numerical vorticity simulation of a Karman vortex at the trailing edge of a hydrofoil based on the two-dimensional simplified model of the NACA0009 hydrofoil under different Reynolds numbers. Combined with image segmentation technology, the fractal characteristics of a turbulent Karman vortex at the trailing edge of a hydrofoil are extracted, the number and total area of vortex cores are calculated, and the fractal dimension of the vortex is obtained. The results show that the fractal dimension can characterize the change in vortex shape and strength under different Reynolds numbers, and that the fractal analysis method is feasible and effective for the shedding analysis of a turbulent Karman vortex.

Funder

National Natural Science Foundation of China

Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3