Abstract
This paper proposes a millimeter-wave lens antenna using 3-dimensional (3D) printing technology to reduce weight and provide stable gain performance. The antenna consists of a four-layer cylindrical gradient-index (GRIN) lens fed by a wideband Yagi antenna. We designed a fractal cell geometry to achieve the desired effective permittivity for a GRIN lens. Among different candidates, the honeycomb structure is chosen to provide high mechanical strength with light weight, low dielectric loss, and lens dispersion for a lens antenna. Therefore, the measured peak gain was relatively flat at 16.86 ± 0.5 dBi within 25−31.5 GHz, corresponding to 1 dB gain bandwidth = 23%. The proposed 3D-printed GRIN lens is cost-effective, with rapid and easy manufacturing.
Funder
National Research Foundation of Korea
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献