Abstract
In this paper, a novel Fabry-Perot cavity (FPC) antenna with a perfect electric conductor (PEC) wall is proposed to design a structurally compact and robust high-gain antenna. Generally, the FPC antenna comprising a PEC ground and a partially reflective dielectric surface (PRDS) is required to have a half-wavelength height to satisfy the resonance condition. If a perfect magnetic conductor (PMC) is substituted for the PEC ground, the height of the FPC antenna can be reduced to a quarter wavelength. The PRDS of the proposed FPC antenna is located on the PEC ground to obtain the effect of a PMC. Moreover, PEC walls are employed to block leakage by a guided mode inside the PRDS. As a result, the proposed FPC antenna can be designed as a compact high-gain antenna although it is composed of PEC ground and PRDS. To verify its feasibility, we simulated and measured the performance of the proposed antenna regarding the reflection coefficient, peak gain, and far-field radiation pattern. Finally, the height of the proposed antenna was reduced by approximately 50% compared with the conventional antenna, while the peak gain is more than equal to that of the conventional antenna.
Publisher
Korean Institute of Electromagnetic Engineering and Science
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Instrumentation,Radiation
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献