Experimental Investigation of the Non-Darcy Equivalent Permeability of Fractured Coal Bodies: The Role of Particle Size Distribution

Author:

Song Shuang12ORCID,Pang Mingkun12,Guo Yi3,Zhang Lei12,Zhang Tianjun12,Pan Hongyu12

Affiliation:

1. College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of Western Mine Exploitation and Hazard Prevention of the Ministry of Education, Xi’an 710054, China

3. Xi’an Research Institute Co., Ltd., China Coal Technology and Engineering Group, Xi’an 710077, China

Abstract

The permeability of crushed coal bodies plays a bottom neck role in seepage processes, which significantly limits the coal resource utilisation. To study the permeability of crushed coal bodies under pressure, the particle size distribution of crushed coal body grains is quantitatively considered by fractal theory. In addition, the parameters of the percolation characteristics of crushed coal body grains are calculated. Moreover, the permeability of the crushed coal body during recrushing is determined by the fractal dimension and porosity. A lateral limit compression test with the crushed coal bodies was carried out to illustrate the effect of the porosity on the permeability, In addition, a compressive crushed coal body size fractal–permeability model was proposed by combination of the fractal dimension and the non-Darcy equivalent permeability. The results show (1) the migration and loss of fine particles lead to a rapid increase in the porosity of the crushed coal body. (2) Increases in the effective stress cause the porosity and permeability to decrease. When the porosity decreases to approximately 0.375, its effect is undermined. (3) The migration and loss of fine particles change the pore structure and enhance the permeability properties of the skeleton, causing sudden seepage changes. (4) At low porosity, the permeability k is slightly larger than the non-Darcy equivalent permeability ke. Thus, the experimental data show an acceptable agreement with the present model. A particle size fractal–percolation model for crushed coal bodies under pressure provides a solution for effectively determining the grain permeability of the crushed coal bodies. The research results can contribute to the formation of more fractal-seepage theoretical models in fractured lithosphere, karst column pillars and coal goaf, and provide theoretical guidance for mine water disaster prevention.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3