Experimental Investigation on Hydraulic Properties of Granular Sandstone and Mudstone Mixtures

Author:

Ma Dan12,Cai Xin1ORCID,Zhou Zilong1ORCID,Li Xibing1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410083, China

2. Research Center of Coal Resources Safe Mining and Clean Utilization, Liaoning Technical University, Fuxin, Liaoning 123000, China

Abstract

The caved zone during longwall mining has high permeability, resulting in a mass of groundwater storage which causes a threat of groundwater inrush hazard to the safe mining. To investigate the hazard mechanism of granular sandstone and mudstone mixture (SMM) in caved zone, this paper presents an experimental study on the effect of sandstone particle (SP) and mudstone particle (MP) weight ratio on the non-Darcy hydraulic properties evolution. A self-designed granular rock seepage experimental equipment has been applied to conduct the experiments. The variation of particle size distribution was induced by loading and water seepage during the test, which indicated that the particle crushing and erosion properties of mudstone were higher than those of sandstone. Porosity evolution of SMM was strongly influenced by loading (sample height) and SP/MP weight ratio. The sample with higher sample height and higher weight ratio of SP achieved higher porosity value. In particular, a non-Darcy equation, for hydraulic properties (permeability κ and non-Darcy coefficient ζ) calculation, was sufficient to fit the relation between the hydraulic gradient and seepage velocity. The test results indicated that, due to the absence and narrowing of fracture and void during loading, the permeability κ decreases and the non-Darcy coefficient ζ increases. The variation of the hydraulic properties of the sample within the same particle size and SP/MP weight ratio indicated that groundwater inrush hazard showed a higher probability of occurrence in sandstone strata and crushed zone (e.g., faults). Moreover, isolated fractures and voids were able to achieve the changeover from self-extension to interconnection at the last loading stage, which caused the fluctuation tendency of κ and ζ. Fluctuation ability in mudstone was higher than that in sandstone. The performance of an empirical model was also investigated for the non-Darcy hydraulic properties evolution prediction of crushing and seepage processes. The predictive results indicated that particle crushing and water erosion caused the increase of hydraulic properties, being the main reason that the experimental values are typically higher than those obtained from the predictive model. The empirical model has a high degree of predictive accuracy; however, κ has a higher predictive accuracy than ζ. Furthermore, the predictive accuracy of κ increases and ζ decreases with increasing weight ratio of SP.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3