Affiliation:
1. School of Information and Mathematics, Yangtze University, Jingzhou 434020, China
2. School of Mathematics and Physics, Jingzhou University, Jingzhou 434020, China
Abstract
Forward-backward stochastic differential equations (FBSDEs) have received more and more attention in the past two decades. FBSDEs can be applied to many fields, such as economics and finance, engineering control, population dynamics analysis, and so on. In most cases, FBSDEs are nonlinear and high-dimensional and cannot be obtained as analytic solutions. Therefore, it is necessary and important to design their numerical approximation methods. In this paper, a novel numerical method of multi-dimensional coupled FBSDEs is proposed based on a fractional Fourier fast transform (FrFFT) algorithm, which is used to compute the Fourier and inverse Fourier transforms. For the forward component of FBSDEs, time discretization is used as well as the backward equation to yield a recursive system with terminal conditions. For the numerical experiments to be successful, three types of numerical methods were used to solve the problem, which ensured the efficiency and speed of computation. Finally, the numerical methods for different examples are verified.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Education Science Planning Project of Hubei Province
Yangtze University
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献