On Finite-Time Blow-Up Problem for Nonlinear Fractional Reaction Diffusion Equation: Analytical Results and Numerical Simulations

Author:

Hamadneh Tareq1,Chebana Zainouba2ORCID,Abu Falahah Ibraheem3,AL-Khassawneh Yazan Alaya4ORCID,Al-Husban Abdallah5,Oussaeif Taki-Eddine2,Ouannas Adel2,Abbes Abderrahmane67ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, Al Zaytoonah University of Jordan, Amman 11733, Jordan

2. Department of Mathematics and Computer Science, University of Larbi Ben M’hidi, Oum El Bouaghi 04000, Algeria

3. Department of Mathematics, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan

4. Data Science and Artificial Intelligence Department, Zarqa University, Zarqa 13133, Jordan

5. Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid 21110, Jordan

6. Department of Mathematics, Badji Mokhtar-Annaba University, Annaba 23000, Algeria

7. Laboratory of Mathematics, Dynamics and Modelization, Badji Mokhtar-Annaba University, Annaba 23000, Algeria

Abstract

The study of the blow-up phenomenon for fractional reaction–diffusion problems is generally deemed of great importance in dealing with several situations that impact our daily lives, and it is applied in many areas such as finance and economics. In this article, we expand on some previous blow-up results for the explicit values and numerical simulation of finite-time blow-up solutions for a semilinear fractional partial differential problem involving a positive power of the solution. We show the behavior solution of the fractional problem, and the numerical solution of the finite-time blow-up solution is also considered. Finally, some illustrative examples and comparisons with the classical problem with integer order are presented, and the validity of the results is demonstrated.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference28 articles.

1. Some problems of the theory of differential equations;Samarskii;Differ. Uravn.,1980

2. Coddigton, E.A., and Levinson, N. (1955). Theory of Ordinary Differential Equations, McGraw–Hill.

3. Cartan, H. (1967). Cours de Calcul Différentiel, Hermann Paris, Collection Méthodes, Editeurs des Sciences et Arts.

4. The solution of the heat equation anubject to the specification of energy;Cannon;Q. Appl. Math.,1963

5. Demailly, J.P. (2006). Analyse numérique et équations diff érentielles, in Presses Universitaires de Grenoble . EDP Sci., 237–243.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3