Abstract
The pulsating characteristics in turbulent flow are very important physical quantities. There are many studies focused on the temporal characteristics of pulsation. However, the spatial distribution of temporal states with pulsations rarely receives attention. Therefore, the pulsation tracking network (PTN) method is proposed to track the pulsating characteristics of turbulence. Based on the computational fluid dynamics (CFD) simulation result, the PTN is arranged in a specific region of the flow domain. The fast Fourier Transform (FFT) method is used for time-frequency conversion. As shown in the example of trailing-edge vortex-shedding flow over NACA0009 hydrofoil, important pulsation quantities, including the total pulsation intensity, dominant frequencies, amplitude of frequencies, and the phase and phase difference, can be obtained with a high spatial resolution. The source, reason and attenuation of the vortex-shedding frequency fvs and the 2 fvs frequency caused by vortex-interaction are well indicated. The dominant regions of fvs and 2 fvs are shown and analysed. The propagation and attenuation of vortex-shedding induced pulsation are understood in detail. Based on the comparison against traditional analysis, PTN is found to function as a good supplement for the CFD post-processing by tracking unknown temporal and spatial characteristics. These findings represent a potential breakthrough in terms of solving actual pulsation-excited flow problems.
Funder
National Natural Science Foundation of China
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献