Fundamental Matrix, Integral Representation and Stability Analysis of the Solutions of Neutral Fractional Systems with Derivatives in the Riemann—Liouville Sense

Author:

Kiskinov Hristo1ORCID,Milev Mariyan2ORCID,Cholakov Slav Ivanov1ORCID,Zahariev Andrey1ORCID

Affiliation:

1. Faculty of Mathematics and Informatics, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen, 4000 Plovdiv, Bulgaria

2. Faculty of Economics and Business Administration, Sofia University “St. Kliment Ohridski”, 15 Tsar Osvoboditel Blvd., 1504 Sofia, Bulgaria

Abstract

The paper studies a class of nonlinear disturbed neutral linear fractional systems with derivatives in the the Riemann–Liouville sense and distributed delays. First, it is proved that the initial problem for these systems with discontinuous initial functions under some natural assumptions possesses a unique solution. The assumptions used for the proof are similar to those used in the case of systems with first-order derivatives. Then, with the obtained result, we derive the existence and uniqueness of a fundamental matrix and a generalized fundamental matrix for the homogeneous system. In the linear case, via these fundamental matrices we obtain integral representations of the solutions of the homogeneous system and the corresponding inhomogeneous system. Furthermore, for the fractional systems with Riemann–Liouville derivatives we introduce a new concept for weighted stabilities in the Lyapunov, Ulam–Hyers, and Ulam–Hyers–Rassias senses, which coincides with the classical stability concepts for the cases of integer-order or Caputo-type derivatives. It is proved that the zero solution of the homogeneous system is weighted stable if and only if all its solutions are weighted bounded. In addition, for the homogeneous system it is established that the weighted stability in the Lyapunov and Ulam–Hyers senses are equivalent if and only if the inequality appearing in the Ulam–Hyers definition possess only bounded solutions. Finally, we derive natural sufficient conditions under which the property of weighted global asymptotic stability of the zero solution of the homogeneous system is preserved under nonlinear disturbances.

Funder

Bulgarian National Science Fund

EU-NextGeneration

Publisher

MDPI AG

Reference37 articles.

1. Hilfer, R. (2000). Applications of Fractional Calculus in Physics, World Scientific.

2. On the solutions of certain fractional kinetic equations;Saxena;Appl. Math. Comput.,2008

3. On Riemann-Liouville and Caputo derivatives;Li;Discret. Dyn. Nat. Soc.,2011

4. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier Science B.V.

5. Podlubny, I. (1999). Fractional Differential Equation, Academic Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3