Stability and Numerical Simulation of a Nonlinear Hadamard Fractional Coupling Laplacian System with Symmetric Periodic Boundary Conditions

Author:

Lv Xiaojun1,Zhao Kaihong2ORCID,Xie Haiping1

Affiliation:

1. Applied Technology College, Soochow University, Suzhou 215325, China

2. Department of Mathematics, School of Electronics & Information Engineering, Taizhou University, Taizhou 318000, China

Abstract

The Hadamard fractional derivative and integral are important parts of fractional calculus which have been widely used in engineering, biology, neural networks, control theory, and so on. In addition, the periodic boundary conditions are an important class of symmetric two-point boundary conditions for differential equations and have wide applications. Therefore, this article considers a class of nonlinear Hadamard fractional coupling (p1,p2)-Laplacian systems with periodic boundary value conditions. Based on nonlinear analysis methods and the contraction mapping principle, we obtain some new and easily verifiable sufficient criteria for the existence and uniqueness of solutions to this system. Moreover, we further discuss the generalized Ulam–Hyers (GUH) stability of this problem by using some inequality techniques. Finally, three examples and simulations explain the correctness and availability of our main results.

Funder

Applied Technology College of Soochow University

Taizhou University

Publisher

MDPI AG

Reference48 articles.

1. Essai sur l’étude des fonctions données par leur développment de Taylor;Hadamard;J. Math. Pures Appl.,1892

2. Ahmad, B., Alsaedi, A., Ntouyas, S., and Tariboon, J.J. (2017). Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer.

3. Kilbas, A., Srivastava, H.M., and Trujillo, J.J. (2006). Theory and Applications of Fractional Differential Equations, Elsevier.

4. Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J.J. (2012). Fractional Calculus: Models and Numerical Methods, World Scientific.

5. Miller, K., and Ross, B. (1993). An introduction to the Fractional Calculus and Differential Equations, Wiley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3