The Fabrication and Characterization of Silicon Surface Grooving Using the CV Etching Technique for Front Deep Metallic Contact Solar Cells

Author:

Rabha Mohamed Ben1ORCID,Choubani Karim2ORCID,Bouktif Belgacem1,Almeshaal Mohammed A.2,Trabelsi Khaled3,Hajjaji Anouar3,Ennetta Ridha4ORCID,Bouabidi Abdallah4,Papathi Murugesan Palaniappan2

Affiliation:

1. Laboratoire de Nanomatériaux et Systèmes pour Énergies Renouvelables, Centre de Recherches et des Technologies de l’Énergie, Technopôle de Borj-Cédria, BP 95 Hammam-Lif, Tunis 2050, Tunisia

2. College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia

3. Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole de Borj Cédria, BP 95, Hammam-Lif 2050, Tunisia

4. Research Unit: Mechanical Modeling, Energy & Materials (M2EM), UR17ES47, National School of Engineers of Gabes (ENIG), Avenue of Omar Ib-Elkhattab, Zrig, Gabes 6023, Tunisia

Abstract

This study experimentally investigated the use of the chemical vapor etching method for silicon surface grooving for regular front deep metallic contact solar cell applications. The thickness of silicon wafers is a crucial parameter in the production of solar cells with front and back buried contacts, because silicon surface grooves result in a larger contact area, which in turn improves carrier collection and increases the collection probability for minority carriers. A simple, low-cost HNO3/HF chemical vapor etching technique was used to create grooves on silicon wafers with the help of a highly effective anti-acid mask. The thick porous layer of powder that was produced was easily dissolved in water, leaving patterned grooved areas on the silicon substrate. A linear dependence was observed between the etched thickness and time, suggesting that the etching process followed a constant etch rate, something that is crucial for ensuring precise and reproducible etching results for the semiconductor and microfabrication industries. Moreover, by creating shorter pathways for charge carriers to travel to their respective contacts, front deep contacts minimize the overall distance they need to traverse and therefore reduce the chance of carrier recombination within the silicon material. As a result, the internal quantum efficiency of solar cells with front deep metallic contacts improved by 35% compared to mc-Si solar cells having planar contacts. The use of front deep contacts therefore represents a forward-looking strategy for improving the performance of silicon solar cells. Indeed, this innovative electrode configuration improves charge carrier collection, mitigates recombination losses, and ultimately leads to more efficient and effective solar energy conversion, which contributes to sustainable energy development in the areas of clean energy resources. Further work needs to be undertaken to develop energy sustainably and consider other clean energy resources.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3