Prediction of Service Life of Thermoplastic Road Markings on Expressways

Author:

Zhao Luhua1,Ding Haonan1ORCID,Sun Junjing1,Wu Guangna1,Xing Huiyao1,Wang Wei2,Song Jie3ORCID

Affiliation:

1. College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China

2. Shandong High Speed Maintenance Group Co., Ltd., Jinan 250032, China

3. Institute of High Performance Computing (IHPC), Agency for Science Technology and Research (A*STAR), 3 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore

Abstract

Currently, historical data and on-site surveys—particularly in the context of China—are heavily relied upon to determine the best time to maintain expressway road markings. This study aims to determine what influences the service life of thermoplastic road markings on expressways in Shandong Province, China, while considering both those motorways’ unique characteristics and the local environment. Additionally, a scientific evaluation of the road markings’ retroreflective coefficient’s decay pattern will be undertaken. We collected the retroreflective data for twelve consecutive months regarding the thermoplastic road markings on five expressways and potential influencing factors such as age of marking and annual average daily traffic. The service life of the markings was forecast using a multiple linear regression. Dominance analysis was used to quantitatively analyze each explanatory factor’s impact on the service life of the markings, and statistically significant variables were also found. Using LightGBM, a machine learning technique, a nonparametric prediction model was also created based on examining the relevance of influencing elements. The modeling results show that LightGBM generates an R2 of 0.942, implying that it offers better interpretability and higher accuracy than the regression-based approach. Additionally, LightGBM outperforms MLR according to final validation accuracies, with a score of 95.02% or more than 8% that of MLR. The results are useful for expressway marking upkeep and for driving safety.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3