A Feed-Forward Back Propagation Neural Network Approach to Predict the Life Condition of Crude Oil Pipeline

Author:

Shaik Nagoor Basha,Pedapati Srinivasa RaoORCID,Taqvi Syed Ali AmmarORCID,Othman A. R.,Dzubir Faizul Azly Abd

Abstract

Pipelines are like a lifeline that is vital to a nation’s economic sustainability; as such, pipelines need to be monitored to optimize their performance as well as reduce the product losses incurred in the transportation of petroleum chemicals. A significant number of pipes would be underground; it is of immediate concern to identify and analyse the level of corrosion and assess the quality of a pipe. Therefore, this study intends to present the development of an intelligent model that predicts the condition of crude oil pipeline cantered on specific factors such as metal loss anomalies (over length, width and depth), wall thickness, weld anomalies and pressure flow. The model is developed using Feed-Forward Back Propagation Network (FFBPN) based on historical inspection data from oil and gas fields. The model was trained using the Levenberg-Marquardt algorithm by changing the number of hidden neurons to achieve promising results in terms of maximum Coefficient of determination (R2) value and minimum Mean Squared Error (MSE). It was identified that a strong R2 value depends on the number of hidden neurons. The model developed with 16 hidden neurons accurately predicted the Estimated Repair Factor (ERF) value with an R2 value of 0.9998. The remaining useful life (RUL) of a pipeline is estimated based on the metal loss growth rate calculations. The deterioration profiles of considered factors are generated to identify the individual impact on pipeline condition. The proposed FFBPN was validated with other published models for its robustness and it was found that FFBPN performed better than the previous approaches. The deterioration curves were generated and it was found that pressure has major negative affect on pipeline condition and weld girth has a minor negative affect on pipeline condition. This study can help petroleum and natural gas industrial operators assess the life condition of existing pipelines and thus enhances their inspection and rehabilitation forecasting.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3