Instantaneous Electricity Peak Load Forecasting Using Optimization and Machine Learning

Author:

Saglam Mustafa1ORCID,Lv Xiaojing2,Spataru Catalina1,Karaman Omer Ali3ORCID

Affiliation:

1. Energy Institute, Bartlett School Environment, Energy and Resources, University College London, London WC1E 6BT, UK

2. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China

3. Department of Electronic and Automation, Vocational School, Batman University, Batman 72100, Türkiye

Abstract

Accurate instantaneous electricity peak load prediction is crucial for efficient capacity planning and cost-effective electricity network establishment. This paper aims to enhance the accuracy of instantaneous peak load forecasting by employing models incorporating various optimization and machine learning (ML) methods. This study examines the impact of independent inputs on peak load estimation through various combinations and subsets using multilinear regression (MLR) equations. This research utilizes input data from 1980 to 2020, including import and export data, population, and gross domestic product (GDP), to forecast the instantaneous electricity peak load as the output value. The effectiveness of these techniques is evaluated based on error metrics, including mean absolute error (MAE), mean square error (MSE), mean absolute percentage error (MAPE), root mean square error (RMSE), and R2. The comparison extends to popular optimization methods, such as particle swarm optimization (PSO), and the newest method in the field, including dandelion optimizer (DO) and gold rush optimizer (GRO). This comparison is made against conventional machine learning methods, such as support vector regression (SVR) and artificial neural network (ANN), in terms of their prediction accuracy. The findings indicate that the ANN and GRO approaches produce the least statistical errors. Furthermore, the correlation matrix indicates a robust positive linear correlation between GDP and instantaneous peak load. The proposed model demonstrates strong predictive capabilities for estimating peak load, with ANN and GRO performing exceptionally well compared to other methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3