A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations

Author:

Alkalbani Alhaitham M.12,Chala Girma T.1ORCID

Affiliation:

1. Department of Mechanical Engineering (Well Engineering), International College of Engineering and Management, P.O. Box 2511, CPO Seeb, Muscat 111, Oman

2. Department of Mechanical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

The field of nanotechnology has shown promise in addressing major problems and improving drilling effectiveness. An overview of the difficulties encountered during oil and gas well drilling operations and the demand for creative solutions opens the debate. This review explores how nanotechnology is transforming the oil industry and enhancing performance as a whole. The evaluation of the uses of nanotechnology for better oil recovery, real-time monitoring, innovative materials, drilling fluids, and reservoir characterization are extensively discussed in this review. The primary function of additives is to improve the fundamental characteristics of drilling fluids. The variety of fluid additives available is a reflection of the complex drilling–fluid systems that are currently being used to enable drilling in increasingly difficult subsurface conditions. Common additives used in water- and oil-based drilling fluids include lubrication, shale stability, filtration control, rheology control, viscosification, and pH regulation. Drilling fluids frequently contain filtration control additives such as starch, polyanionic cellulose (PAC), carboxymethyl cellulose (CMC), and nanoparticles (NP). Commonly used rheology-modifier additives are xanthan gum, carboxymethyl cellulose, guar gum powder, and, more recently, salt-responsive zwitterionic polymers that were used as viscosifiers to water-based drilling fluids. The three main additives that regulate pH are citric acid monohydrate, potassium hydroxide, and sodium hydroxide. Additives that stabilize shale, such as potassium and sodium salts and asphaltenes, are often used. A wide range of materials are included in the category of lubricating additives, including polymers, asphaltenes, glass beads, oils of various grades, and oil-surfactants. Various fibrous materials, including wood, cotton, fibrous minerals, shredded tires from vehicles, and paper pulp, are used as additives to control circulation. Furthermore, shredded cellophane, bits of plastic laminate, plate-like minerals like mica flakes, granulated inert materials such as nut shells, and nano-polymers are used in wellbores to reduce fluid loss. The incorporation of nanoparticles into drilling fluids has produced upgraded fluids with better features, including improved lubricity, thermal stability, and filtering capacities. These developments aid in lowering friction, enhancing wellbore stability, and enhancing drilling efficiency. This paper also emphasizes how nanotechnology has made enhanced drilling equipment and materials possible. Drilling equipment’s longevity and performance are increased by nanocomposite materials that have been reinforced with nanoparticles due to their improved mechanical strength, wear resistance, and thermal stability. Advanced reservoir characterisation tools, including nanoparticle tracers and nanoscale imaging methods, can help locate the best drilling sites and increase production effectiveness. On the other hand, nanofluids and nanoemulsions can potentially increase oil recovery because they enhance fluid mobility, lower interfacial tension, and alter rock wettability. Although nanotechnology has many advantages, there are also issues that need to be resolved. For an implementation to be effective, factors including nanoparticle stability, dispersion, and potential environmental effects must be carefully taken into account. This review highlights the need for future research to create scalable manufacturing procedures, improve nanoparticle behaviour, and determine nanomaterials’ long-term environmental effects. In conclusion, this in-depth analysis illustrates the use of nanotechnology in transforming the process of drilling oil and gas wells.

Funder

Ministry of Higher Education, Research and Innovation (MoHERI) of Oman

Publisher

MDPI AG

Reference165 articles.

1. Application of nanotechnology in petroleum exploration and development;Liu;Pet. Explor. Dev.,2016

2. Abdo, J., and Haneef, M.D. (2010, January 21–24). Nanoparticles: Promising solution to overcome stern drilling problems. Proceedings of the Nanotech Conference and Exhibition, Anaheim, CA, USA.

3. Improvement of thermal stability of polyacryl amide solution used as a nano-fluid in enhanced oil recovery process by nanoclay;Cheraghian;Int. J. Nanosci. Nanotechnol.,2015

4. Nano-enhanced drilling fluids: Pioneering approach to overcome uncompromising drilling problems;Abdo;J. Energy Resourse Technol.,2012

5. A review on preparation, characterization, properties and applications of nanofluids;Devendiran;Renew. Sustain. Energy Rev.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3