Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems

Author:

Abdo J.,Haneef M. Danish1

Affiliation:

1. Mechanical and Industrial Engineering Department, P.O Box: 33, Sultan Qaboos University, Muscat 123, Oman

Abstract

The idea of pushing the limits of drilling oil and gas wells by improving drilling fluids for undemanding and cost efficient drilling operations by extracting advantage from the wonders of nanotechnology forms the basis of the work presented here. Foremost, in order to highlight the significance of reducing the size distribution of particles, new clay ATR which has a chain like structure and offers enormous surface area and increased reactivity was tested in different sizes that were chemically and mechanically milled. Bentonite which is a commonly used drilling fluid additive was also tested in different particle size distribution (PSD) and rheological properties were tested. Significant reduction in viscosity with small sized particles was recorded. The tested material called ATR throughout this paper is shown to offer better functionality than bentonite without the requirement of other expensive additives. Experiments were performed with different size distributions and compositions and drastic changes in rheological properties are observed. A detailed investigation of the shear thinning behavior was also carried out with ATR samples in order to confirm its functionality for eliminating the problem of mechanical and differential pipe sticking, while retaining suitable viscosity and density for avoidance of problems like lost circulation, poor hole cleaning and inappropriate operating hydrostatic pressures.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference12 articles.

1. Have We Run Out of Oil Yet? Oil Peaking Analysis From an Optimist’s Perspective;Greene;Energy Policy

2. Yarim G. , MayR., TrejoA., and ChurchP., 2007, “Stuck Pipe Prevention: A Proactive Solution to an Old Problem,” Society of Petroleum Engineers, 109914-MS.

3. Adriana M. , NeumanJ., and SamuelR., 2009, “Pipe Sticking Prediction and Avoidance Using Adaptive Fuzzy Logic and Neural Network Modeling, Society of Petroleum Engineers,” 120128-MS.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3