Predictive Model for EV Charging Load Incorporating Multimodal Travel Behavior and Microscopic Traffic Simulation

Author:

Bian Haihong1ORCID,Ren Quance1ORCID,Guo Zhengyang12ORCID,Zhou Chengang3ORCID,Zhang Zhiyuan1,Wang Ximeng1

Affiliation:

1. School of Electrical Engineering, Nanjing Institute of Technology, Nanjing 211167, China

2. Hangzhou Power Supply Company of State Grid Zhejiang Electricity Power Co., Ltd., Hangzhou 310016, China

3. College of Energy and Electrical Engineering, Hohai University, Nanjing 210098, China

Abstract

A predictive model for the spatiotemporal distribution of electric vehicle (EV) charging load is proposed in this paper, considering multimodal travel behavior and microscopic traffic simulation. Firstly, the characteristic variables of travel time are fitted using advanced techniques such as Gaussian mixture distribution. Simultaneously, the user’s multimodal travel behavior is delineated by introducing travel purpose transfer probabilities, thus establishing a comprehensive travel spatiotemporal model. Secondly, the improved Floyd algorithm is employed to select the optimal path, taking into account various factors including signal light status, vehicle speed, and the position of starting and ending sections. Moreover, the approach of multi-lane lane change following and the utilization of cellular automata theory are introduced. To establish a microscopic traffic simulation model, a real-time energy consumption model is integrated with the aforementioned techniques. Thirdly, the minimum regret value is leveraged in conjunction with various other factors, including driving purpose, charging station electricity price, parking cost, and more, to simulate the decision-making process of users regarding charging stations. Subsequently, an EV charging load predictive framework is proposed based on the approach driven by electricity prices and real-time interaction of coupled network information. Finally, this paper conducts large-scale simulations to analyze the spatiotemporal distribution characteristics of EV charging load using a regional transportation network in East China and a typical power distribution network as case studies, thereby validating the feasibility of the proposed method.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3