Active Power Dispatch for Supporting Grid Frequency Regulation in Wind Farms Considering Fatigue Load

Author:

Liu ,Wang ,Wang ,Zhu ,Lio ORCID

Abstract

This paper proposes an active power control method for supporting grid frequency regulation in wind farms (WF) considering improved fatigue load sensitivity of wind turbines (WT). The control method is concluded into two parts: frequency adjustment control (FAC) and power reference dispatch (PRD). On one hand, the proposed Fuzzy-PID control method can actively maintain the balance between power generation and grid load, by which the grid frequency is regulated when plenty of winds are available. The fast power response can be provided and frequency error can be reduced by the proposed method. On the other hand, the sensitivity of the WT fatigue loads to the power references is improved. The explicit analytical equations of the fatigue load sensitivity are re-derived to improve calculation accuracy. In the process of the optimization dispatch, the re-defined fatigue load sensitivity will be used to minimize fatigue load. Case studies were conducted with a WF under different grid loads and turbulent wind with different intensities. By comparing the frequency response of the WF, rainflow cycle, and Damage Equivalent Load (DEL) of the WT, the efficacy of the proposed method is verified.

Funder

National Natural Science Foundation of China

Liaoning Provincial Department of Education Serves Local Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VSG Frequency Response Strategy for Doubly-Fed Wind Farm Considering the Fatigue Load;Electronics;2024-06-13

2. Anti-Windup Active Power Control for Wind Turbines Considering Loads Reduction;2024 IEEE 13th Data Driven Control and Learning Systems Conference (DDCLS);2024-05-17

3. An optimal hybrid control strategy for supporting frequency regulation considering fatigue load mitigation of wind turbines;Journal of Renewable and Sustainable Energy;2024-03-01

4. Potential Maximum Power Estimation for Wind Farms Based on LSTM Neural Network;2023 International Conference on Power System Technology (PowerCon);2023-09-21

5. Model Predictive Control Based Active Power Control of Wind Turbines to Mitigate the Thrust Force;2023 5th International Conference on Power and Energy Technology (ICPET);2023-07-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3