Thermal Stability of Encapsulated Carbon-Based Multiporous-Layered-Electrode Perovskite Solar Cells Extended to Over 5000 h at 85 °C

Author:

Tsuji Ryuki12ORCID,Nagano Yuuma1,Oishi Kota1,Kobayashi Eiji3,Ito Seigo1ORCID

Affiliation:

1. Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan

2. Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan

3. Kishu Giken Kogyo Co., Ltd., 446 Nunohiki, Wakayama 641-0015, Wakayama, Japan

Abstract

The key to the practical application of organometal–halide crystals perovskite solar cells (PSCs) is to achieve thermal stability through robust encapsulation. This paper presents a method to significantly extend the thermal stability lifetime of perovskite solar cells to over 5000 h at 85 °C by demonstrating an optimal combination of encapsulation methods and perovskite composition for carbon-based multiporous-layered-electrode (MPLE)-PSCs. We fabricated four types of MPLE-PSCs using two encapsulation structures (over- and side-sealing with thermoplastic resin films) and two perovskite compositions ((5-AVA)x(methylammonium (MA))1−xPbI3 and (formamidinium (FA))0.9Cs0.1PbI3), and analyzed the 85 °C thermal stability followed by the ISOS-D-2 protocol. Without encapsulation, FA0.9Cs0.1PbI3 exhibited higher thermal stability than (5-AVA)x(MA)1−xPbI3. However, encapsulation reversed the phenomenon (that of (5-AVA)x(MA)1−xPbI3 became stronger). The combination of the (5-AVA)x(MA)1−xPbI3 perovskite absorber and over-sealing encapsulation effectively suppressed the thermal degradation, resulting in a PCE value of 91.2% of the initial value after 5072 h. On the other hand, another combination (side-sealing on (5-AVA)x(MA)1−xPbI3 and over- and side-sealing on FA0.9Cs0.1PbI3) resulted in decreased stability. The FACs-based perovskite was decomposed from these degradation mechanisms by the condensation reaction between FA and carbon. For side-sealing, the space between the cell and the encapsulant was estimated to contain approximately 1,260,000 times more H2O than in over-sealing, which catalyzed the degradation of the perovskite crystals. Our results demonstrate that MA-based PSCs, which are generally considered to be thermally sensitive, can significantly extend their thermal stability after proper encapsulation. Therefore, we emphasize that finding the appropriate combination of encapsulation technique and perovskite composition is quite important to achieve further device stability.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science (JSPS) KA-KENHI

Azbil Yamatake General Foundation

The Electrochemical Society of Japan

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3