Abstract
AbstractSilicon heterojunction (SHJ) solar cells have reached high power conversion efficiency owing to their effective passivating contact structures. Improvements in the optoelectronic properties of these contacts can enable higher device efficiency, thus further consolidating the commercial potential of SHJ technology. Here we increase the efficiency of back junction SHJ solar cells with improved back contacts consisting of p-type doped nanocrystalline silicon and a transparent conductive oxide with a low sheet resistance. The electrical properties of the hole-selective contact are analysed and compared with a p-type doped amorphous silicon contact. We demonstrate improvement in the charge carrier transport and a low contact resistivity (<5 mΩ cm2). Eventually, we report a series of certified power conversion efficiencies of up to 26.81% and fill factors up to 86.59% on industry-grade silicon wafers (274 cm2, M6 size).
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
222 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献