Water Intrusion Characterization in Naturally Fractured Gas Reservoir Based on Spatial DFN Connectivity Analysis

Author:

Chen Pengyu,Fiallos-Torres Mauricio,Xing Yuzhong,Yu Wei,Guo Chunqiu,Leines-Artieda Joseph,Cheng Muwei,Xie Hongbing,Shi Haidong,Mao Zhenyu,Miao Jijun,Sepehrnoori Kamy

Abstract

In this study, the non-intrusive embedded discrete fracture model (EDFM) in combination with the Oda method are employed to characterize natural fracture networks fast and accurately, by identifying the dominant water flow paths through spatial connectivity analysis. The purpose of this study is to present a successful field case application in which a novel workflow integrates field data, discrete fracture network (DFN), and production analysis with spatial fracture connectivity analysis to characterize dominant flow paths for water intrusion in a field-scale numerical simulation. Initially, the water intrusion of single-well sector models was history matched. Then, resulting parameters of the single-well models were incorporated into the full field model, and the pressure and water breakthrough of all the producing wells were matched. Finally, forecast results were evaluated. Consequently, one of the findings is that wellbore connectivity to the fracture network has a considerable effect on characterizing the water intrusion in fractured gas reservoirs. Additionally, dominant water flow paths within the fracture network, easily modeled by EDFM as effective fracture zones, aid in understanding and predicting the water intrusion phenomena. Therefore, fracture clustering as shortest paths from the water contacts to the wellbore endorses the results of the numerical simulation. Finally, matching the breakthrough time depends on merging responses from multiple dominant water flow paths within the distributions of the fracture network. The conclusions of this investigation are crucial to field modeling and the decision-making process of well operation by anticipating water intrusion behavior through probable flow paths within the fracture networks.

Funder

National Science and Technology Major Project of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3