Abstract
A novel process is proposed whereby wood wastes from forest tree mortalities and improved forest management are co-digested with high in nitrogen content animal manures to yield bio-methane along with nitrogen, phosphorous, and potassium bio-fertilizers. The process mimics the well-known wood conversion to methane process in lower termites but relies on thermophilic fungi, bacteria, and archaea instead. It is based on the modified state-of-the art two-step, hyperthermophilic (70 °C) hydrolysis and thermophilic (55 °C) fermentation, dry (30% TS), anaerobic digestion technology with a high organic loading and shortened retention time. The process is augmented with the thermophilic fermentation of carbon dioxide in the biogas into secondary bio-methane by employing hydrogen produced via wind-powered electrolysis. The entire process comprised of five distinct steps is designated as “Wood to Methane 3 + 2”. An industrial type, standardized plant unit has been developed that can be employed in a modular fashion. The implementation of these plant units across the US, utilizing the estimated waste wood potential along with 3/4 of the produced poultry and pig manure, would generate the equivalent of 2/3 of transportation fuel consumption and would supply about 11% of current US energy use per annum. The produced bio-methane can be cost-competitive only if it is employed as a transportation fuel to replace fossil gasoline and diesel fuels. The required annual investment over a 20-year period is well within the means of the US economy in a public–private development partnership.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference49 articles.
1. The Cambridge Illustrated Glossary of Botanical Terms;Hickey,2001
2. Mémotech Bois et Matériaux Associés;Barette,1996
3. Lignin Biosynthesis
4. Kraft Pulping. A Compilation of Notes;Agneta,1993
5. Resins, Natural;Fiebach,2000
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献