Stability of Inhaled Ciprofloxacin-Loaded Poly(2-ethyl-2-oxazoline) Nanoparticle Dry Powder Inhaler Formulation in High Stressed Conditions

Author:

Sabuj Mohammad Zaidur RahmanORCID,Rashid Md AbdurORCID,Dargaville Tim R.,Islam NazrulORCID

Abstract

In this study, the stability of ciprofloxacin (CIP)-loaded poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) was investigated at normal and high stressed conditions. The blank NPs were used to understand the intrinsic physicochemical properties of the polymer NPs under these storage conditions. The formulated NPs were prepared by a coassembly reaction and dried by lyophilization. The powder NPs were stored at controlled room temperature (25 °C) with normal relative humidity (RH) (43%) and high temperature (40 °C) and RH (75%). The stored samples were analyzed by determining the particle sizes, morphology, solid-state properties, thermal behavior, drug-polymer interactions, and aerosol performances over six months. The chemical stability of the formulations was determined by X-ray diffraction, attenuated total refection-Fourier transform infrared (ATR-FTIR), and high-performance liquid chromatography (HPLC) over six months under both conditions. The particle size of the blank PEtOx NPs significantly (p < 0.05) increased from 195.4 nm to 202.7 nm after 3 months at 40 °C/75% RH due to the moisture absorption from high RH; however, no significant increase was observed afterward. On the other hand, the sizes of CIP-loaded PEtOx NPs significantly (p < 0.05) reduced from 200.2 nm to 126.3 nm after 6 months at 40 °C/75% RH. In addition, the scanning electron microscopy (SEM) images revealed that the surfaces of CIP-loaded PEtOx NPs become smoother after 3 months of storage due to the decay of surface drugs compared to the freshly prepared NPs. However, transmission electron microscopy (TEM) images could not provide much information on drug decay from the nanoparticle’s surfaces. The fine particle fraction (FPF) of CIP-loaded PEtOx NPs dropped significantly (p < 0.05) after three months at 25 °C/43% RH and 40 °C/75% RH conditions. The reduced FPF of CIP-loaded PEtOx NPs occurred due to the drug decay from the polymeric surface and blank PEtOx NPs due to the aggregations of the NPs at high temperatures and RH. Although the aerosolization properties of the prepared CIP-loaded PEtOx NPs were reduced, all formulations were chemically stable in the experimental conditions.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference39 articles.

1. Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract infections;Sabuj;Nanoscale Adv.,2021

2. Physical stability of dry powder inhaler formulations;Shetty;Expert Opin. Drug Deliv.,2020

3. Surface energy and the contact of elastic solid;Johnson;Proc. R. Soc. A,1971

4. Solid bridge formation in sulfonamide-Emdex interactive systems;Padmadisastra;Int. J. Pharm.,1994

5. Moisture bonding in powders;Coelho;Powder Technol.,1978

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3