Affiliation:
1. Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Street 6, 6720 Szeged, Hungary
Abstract
Pulmonary drug transport has numerous benefits. Large surface areas for absorption and limited drug degradation of the gastrointestinal system are provided through the respiratory tract. The administration is painless and easy for the patient. Due to their better stability when compared to liquid formulations, powders have gained popularity among pulmonary formulations. In the pharmaceutical sector, quality assurance and product stability have drawn a lot of attention. Due to this, it was decided to perform a long-term stability study on a previously developed, nanosized dry powder inhaler (DPI) formulation that contained meloxicam. Wet milling was implemented to reduce the particle size, and nano spray-drying was used to produce the extra-fine inhalable particles. The particle diameter was determined using dynamic light scattering and laser diffraction. Scanning electron microscopy was utilized to describe the morphology. X-ray powder diffraction and differential scanning calorimetry were applied to determine the crystallinity. In an artificial lung medium, the in vitro dissolution was studied. The Andersen Cascade Impactor was used to investigate the in vitro aerodynamic characteristics. The stability test results demonstrated that the DPI formulation maintained its essential qualities after 6 and 12 months of storage. Consequently, the product might be promising for further studies and development.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献