Synthesis, Characterization and Biological Investigation of New N-Modified Spinorphin Analogs

Author:

Todorov PetarORCID,Georgieva StelaORCID,Tchekalarova JanaORCID,Subaer SubaerORCID,Peneva Petia,Hartati Hartati

Abstract

The emergence of diverse peptide derivatives has been due to constant efforts to find a specific peptide with pronounced biological activity for effective application as a therapeutic. Spinorphin-peptide products have been reported to possess various applications and properties. In the present study, spinorphin peptides with a rhodamine residue and a modification in the amino acid backbone were synthesized by a solid-phase method using Fmoc chemistry. The results obtained from the spectral and electrochemical techniques used: Scanning electron microscopy (SEM), UV-vis, fluorescence, infrared spectroscopy (IR), and voltammetry were used to elucidate the structural characteristics and some physicochemical properties to gain insight into their behavior in the solid state and in aqueous solutions with different pHs. Both Rh-S5 and Rh-S6 had compound anticonvulsant effect comparable to Rh-S against psychomotor seizures at the highest dose of 20 μg. Furthermore, Rh-S6 showed a strong ability to inhibit seizure propagation and had a similar threshold to Rh-S against the intravenous pentylenetetrazol induced clonic seizure in mice; one of the three hybrid spinorphin analogs tested when screened for anticonvulsant activity. Biological tests against several bacterial pathogens such as Staphylococcus aureus, Escherichia coli, and Bacillus cereus showed similar results to negative control of the new peptide derivatives. The compounds also showed weak activity against Candida albicans fungus. The antioxidant testing results revealed more than 50% activity by reviewing the radical deterrence capabilities of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The results are indicative of the ongoing search for universal antimicrobial agents with pronounced synergism when used simultaneously as anticonvulsant, antibacterial, and antifungal agents.

Funder

Bulgarian National Scientific Fund project

Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3