Chemical Behavior and Bioactive Properties of Spinorphin Conjugated to 5,5′-Dimethyl- and 5,5′-Diphenylhydantoin Analogs

Author:

Georgieva Stela1ORCID,Todorov Petar2ORCID,Tchekalarova Jana3ORCID,Subaer Subaer4ORCID,Peneva Petia2,Chakarov Kalin1,Hartati Hartati4,Faika Sitti4

Affiliation:

1. Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria

2. Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria

3. Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

4. Material Physics Laboratory, Physics Department, Universitas Negeri Makassar (UNM), Makassar 90223, Indonesia

Abstract

The discovery of new peptides and their derivatives is an outcome of ongoing efforts to identify a peptide with significant biological activity for effective usage as a possible therapeutic agent. Spinorphin peptides have been documented to exhibit numerous applications and features. In this study, biologically active peptide derivatives based on novel peptide analogues of spinorphin conjugated with 5,5′-dimethyl (Dm) and 5,5′-diphenyl (Ph) hydantoin derivatives have been successfully synthesized and characterized. Scanning electron microscopy (SEM) and spectral methods such as UV-Vis, FT-IR (Fourier Transform Infrared Spectroscopy), CD (Circular Dichroism), and fluorimetry were used to characterize the microstructure of the resulting compounds. The results revealed changes in peptide morphology as a result of the restructuring of the aminoacidic sequences and aromatic bonds, which is related to the formation of intermolecular hydrogen bonds between tyrosyl groups and the hydantoin moiety. Electrochemical and fluorescence approaches were used to determine some physicochemical parameters related to the biological behavior of the compounds. The biological properties of the spinorphin derivatives were evaluated in vivo for anticonvulsant activity against the psychomotor seizures at different doses of the studied peptides. Both spinorphin analog peptides with Ph and Dm groups showed activity against all three phases of the seizure in the intravenous Pentylenetetrazole Seizure (ivPTZ) test. This suggests that hydantoin residues do not play a crucial role in the structure of spinorphin compounds and in determining the potency to raise the seizure threshold. On the other hand, analogs with a phenytoin residue are active against the drug-resistant epilepsy test (6-Hz test). In addition, bioactivity analyses revealed that the new peptide analogues have the potential to be used as antimicrobial and antioxidant compounds. These findings suggest promising avenues for further research that may lead to the development of alternative medicines or applications in various fields beyond epilepsy treatment.

Funder

Bulgarian National Scientific Fund project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3