Abstract
Pyramidal-, erect- or upright-growing plant forms are characterized by narrow branch angles of shoots and leaves. The putative advantage of upright-leaf and shoot habit could be a more efficient penetration of light into lower canopy layers. Pyramidal genotypes have already been reported for various tree genotypes including peach. The paralogous rice ortholog TILLER ANGLE CONTROL 1 (TAC1) has been proposed to be the responsible gene for upright growth. However, it has not really been demonstrated for any of the pyramidal tree genotypes that a knock-out mutation of the TAC1 gene is causing pyramidal plant growth. By in silico analyses, we have identified a putative rice TAC1 ortholog (Potri.014G102600, “TAC-14”) and its paralog (Potri.002G175300, “TAC-2”) in the genome of P. trichocarpa. Two putative PcTAC1 orthologs in the P. × canescens clone INRA 717-1B4 were successfully knocked-out by applying a transgenic CRISPR/Cas9-approach. The mutants were molecularly analyzed and phenotyped over a period of three years in a glasshouse. Our results indicate that the homozygous knock-out of “TAC-14” is sufficient to induce pyramidal plant growth in P. × canescens. If up to twice as many pyramidal individuals were planted on short rotation coppices (SRCs), this could lead to higher wood yield, without any breeding, simply by increasing the number of trees on a default field size.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献