Genome Editing in Forest Trees

Author:

Bruegmann Tobias,Fendel Alexander,Zahn Virginia,Fladung Matthias

Abstract

AbstractSince the first CRISPR/Cas-mediated genome editing of poplar in 2015, an increasing number of tree species are being genome-edited. Although the availability of genome sequences, tissue culture and transformation systems are limiting factors, research is ongoing on advanced methods such as DNA-free genome editing and gene targeting approaches in addition to the optimisation of single gene knockouts. These can be used to address ambitious issues and perform genome editing more accurately, which has implications for the legal assessment of edited trees. Once technically established, CRISPR/Cas can be used to circumvent specific challenges related to forest tree species, e.g., longevity and extended vegetative phases, and to modify traits relevant for breeding, whether for direct application or to elucidate the genetic basis of individual traits. Not least due to climate change, adaptation to abiotic stress such as drought stress as well as biotic stresses caused by pathogens are strongly in focus. For the use as a renewable resource and as a carbon sink, wood productivity in forest trees as well as wood properties are of interest. In biosafety assessments, tree-specific aspects have to be considered, which result, among other aspects, from the long lifespan.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3