Novel Concept of Cogeneration-Integrated Heat Pump-Assisted Fractionation of Alkylation Reactor Effluent for Increased Power Production and Overall CO2 Emissions Decrease

Author:

Variny MiroslavORCID,Furda Patrik,Švistun Ladislav,Rimár Miroslav,Kizek JánORCID,Kováč Norbert,Illés Peter,Janošovský Ján,Váhovský Jakub,Mierka Otto

Abstract

Alkylate produced by catalyzed reaction of isobutane and olefin-rich streams is a desired component for gasoline blending. Fractionation of the alkylation reactor effluent is energy demanding due to the presence of close boiling point components and solutions cutting its energy intensity; expenses associated with this process are investigated intensely nowadays. This paper presents a novel conceptual design and techno-economic analysis of alkylation reaction effluent fractionation revamp to reach a cut in energy costs of the fractionation process without the need to revamp the rectification columns themselves, providing thus an alternative approach to a more sustainable alkylation process. Two cases are considered—A. additional steam turbine installation or B. combustion engine-driven heat pump-assisted rectification. Mathematical modeling of the considered system and its revamp is applied using the “frozen technology” approach. Real system operation features and seasonal variations are included considering the refinery’s combined heat and power (CHP) unit operation and CO2 emissions balance both internal and external to the refinery. Case A yields an expectable yearly benefit (saved energy minus additionally consumed energy minus CO2 emissions increase; expressed in financial terms) of €110–140 thousand, net present value (NPV) of −€18 to €272 thousand and produces 3.3 GWh/year of electric energy. Case B delivers a benefit of €900–1200 thousand, NPV of −€293 to €2823 thousand while producing 33 GWh/year of electricity. Both cases exhibit analogous simple payback periods (8–10 years). Marginal electric efficiency of Case B (78.3%) documents the energy integration level in this case, exploiting the system and CHP unit operation synergies. CHP unit summer operation mode and steam network restrictions significantly affect the seasonal benefit of Case B. CO2 emissions increase in both cases, Case A and Case B, considering the refinery level. However, including external CO2 emissions leads to emissions decrease in both cases of up to 26 kton/year (Case B.) The presented results document the viability of the proposed concepts comparable to the traditional (reference) solution of a high performance (COP = 8) heat pump while their performance sensitivity stresses the need for complex techno-economic assessment.

Funder

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3