Energy-Economizing Optimization of Magnesium Alloy Hot Stamping Process

Author:

Gao Mengdi,Wang Qingyang,Li Lei,Ma Zhilin

Abstract

Reducing the mass of vehicles is an effective way to improve energy efficiency and mileage. Therefore, hot stamping is developed to manufacture lightweight materials used for vehicle production, such as magnesium and aluminum alloys. However, in comparison with traditional cold stamping, hot stamping is a high-energy-consumption process, because it requires heating sheet materials to a certain temperature before forming. Moreover, the process parameters of hot stamping considerably influence the product forming quality and energy consumption. In this work, the energy-economizing indices of hot stamping are established with multiobjective consideration of energy consumption and product forming quality to find a pathway by which to obtain optimal hot stamping process parameters. An energy consumption index is quantified by the developed models, and forming quality indices are calculated using a finite element model. Response surface models between the process parameters and energy-economizing indices are established by combining the Latin hypercube design and response surface methodology. The multiobjective problem is solved using a multiobjective genetic algorithm (NSGA-II) to obtain the Pareto frontier. ZK60 magnesium alloy hot stamping is applied as a case study to obtain an optimal combination of parameters, and compromise solutions are compared through stamping trials and numerical simulations. The obtained results may be used for guiding process optimization regarding energy saving and the method of manufacturing parameters selection.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3