Trade-Offs between Avoidance of Noxious Electric Shock and Avoidance of Bright Light in Shore Crabs Are Consistent with Predictions of Pain

Author:

Barr Stuart1,Elwood Robert W.1ORCID

Affiliation:

1. School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK

Abstract

The suggestion that decapod crustaceans might experience pain has been dismissed by some authors who claim decapods only respond to noxious stimuli by nociceptive reflexes. Because reflexes do not require complex neuronal processing, but pain does, demonstrating reflex responses to noxious stimuli would not support the case for pain. Here, we report an experiment in which shore crabs are repeatedly placed in a light area (20 trials), but the animals can avoid the light by moving to a dark shelter. However, some crabs received an electric shock of 6 or 12 volts each time they entered the shelter. Those receiving either level of shock swiftly reduced their use of shelters and remained in the light. However, the magnitude of shelter avoidance was influenced by the brightness of the arena and the intensity of the shock. Shelter use was subsequently reduced to a greater extent if the shock level was high and the light intensity low. That is, crabs traded their avoidance of shock for their avoidance of bright light. Further, these animals showed avoidance learning and demonstrated activities suggesting anxiety, such as contact with the tank wall in the light area and increased latency to enter shelters when making the decision to enter the shelter if they had received shock in earlier trials. These results fulfil three key behavioural criteria for pain and, thus, are consistent with the idea that decapods can experience pain.

Funder

Department for Agriculture and Rural Development, Northern Ireland

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3