Discrimination between nociceptive reflexes and more complex responses consistent with pain in crustaceans

Author:

Elwood Robert W.1ORCID

Affiliation:

1. School of Biological Sciences, Queen's University, Belfast BT9 7BL, UK

Abstract

Animals have quick-acting nociceptive reflexes that protect them from tissue damage. Some taxa have also evolved the capacity for pain. Pain appears to be linked to long-term changes in motivation brought about by the aversive nature of the experience. Pain presumably enhances long-term protection through behaviour modification based, in part, on memory. However, crustaceans have long been viewed as responding purely by reflex and thus not experiencing pain. This paper considers behavioural and physiological criteria that distinguish nociception from potential pain in this taxon. These include trade-offs with other motivational systems and prolonged motivational change. Complex, prolonged grooming or rubbing demonstrate the perception of the specific site of stimulus application. Recent evidence of fitness-enhancing, anxiety-like states is also consistent with the idea of pain. Physiological changes in response to noxious stimuli mediate some of the behavioural change. Rapid avoidance learning and prolonged memory indicate central processing rather than mere reflexes. Thus, available data go beyond the idea of just nociception. However, the impossibility of total proof of pain described in ways appropriate for our own species means that pain in crustaceans is still disputed. Pain in animals should be defined in ways that do not depend on human pain experience. This article is part of the Theo Murphy meeting issue ‘Evolution of mechanisms and behaviour important for pain’.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference42 articles.

1. Can invertebrates suffer? Or how robust is argument-by-analogy?;Sherwin CM;Anim. Welfare,2001

2. Can fish really feel pain?

3. Defining and assessing animal pain

4. Assessing the Potential for Pain in Crustaceans and Other Invertebrates

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3